Magnetic Fly Ash as a Chronological Marker in Post-Settlement Alluvial and Lacustrine Sediment: Examples from North Carolina and Illinois

David A. Grimley, Ashley S. Lynn, Colby W. Brown, Neal E. Blair

Research output: Contribution to journalArticlepeer-review


Fly ash consists of mainly silt-size spherules that form during high-temperature coal combustion, such as in steam locomotives and coal-burning power plants. In the eastern USA, fly ash was distributed across the landscape atmospherically beginning in the late 19th century, peaking in the mid-20th century, and decreasing sharply with implementation of late 20th century particulate pollution controls. Although atmospheric deposition is limited today, fly ash particles continue to be resedimented into alluvial and lacustrine deposits from upland soil erosion and failure of fly ash storage ponds. Magnetic fly ash is easily extracted and identified microscopically, allowing for a simple and reproducible method for identifying post-1850 CE (Common Era) alluvium and lacustrine sediment. In the North Carolina Piedmont, magnetic fly ash was identified within the upper 50 cm at each of eight alluvial sites and one former milldam site. Extracted fly ash spherules have a magnetite or maghemite composition, with substitutions of Al, Si, Ca, and Ti, and range from 3–125 µm in diameter (mainly 10–45 µm). Based on the presence of fly ash, post-1850 alluvial deposits are 15–45 cm thick in central North Carolina river valleys (<0.5 km wide), ~60% thinner than in central Illinois valleys of similar width. Slower sedimentation rates in North Carolina watersheds are likely a result of a less agricultural land and less erodible (more clayey) soils. Artificial reservoirs (Lake Decatur, IL) and milldams (Betty’s Mill, NC), provide chronological tests for the fly ash method and high-resolution records of anthropogenic change. In cores of Lake Decatur sediments, changes in fly ash content appear related to decadal-scale variations in annual rainfall (and runoff), calcite precipitation, land-use changes, and/or lake history, superimposed on longer-term trends in particulate pollution.
Original languageEnglish (US)
Issue number5
StatePublished - 2021


Dive into the research topics of 'Magnetic Fly Ash as a Chronological Marker in Post-Settlement Alluvial and Lacustrine Sediment: Examples from North Carolina and Illinois'. Together they form a unique fingerprint.

Cite this