Abstract
We introduce Magicoder, a series of fully open-source (code, weights, and data) Large Language Models (LLMs) for code that significantly closes the gap with top code models while having no more than 7B parameters. Magicoder models are trained on 75K synthetic instruction data using OSS-INSTRUCT, a novel approach to enlightening LLMs with open-source code snippets to generate diverse instruction data for code. Our main motivation is to mitigate the inherent bias of the synthetic data generated by LLMs through the wealth of open-source references for the production of more realistic and controllable data. The orthogonality of OSS-INSTRUCT and other data generation methods like Evol-Instruct further enables us to build an enhanced MagicoderS. Both Magicoder and MagicoderS substantially outperform state-of-the-art code models with similar or even larger sizes on a wide range of coding benchmarks. Notably, MagicoderS-CL-7B based on CODELLAMA even surpasses the prominent ChatGPT on HumanEval+ (66.5 vs. 65.9 in pass@1). Overall, OSS-INSTRUCT opens a new direction for crafting diverse synthetic instruction data for code using abundant open-source references.
Original language | English (US) |
---|---|
Pages (from-to) | 52632-52657 |
Number of pages | 26 |
Journal | Proceedings of Machine Learning Research |
Volume | 235 |
State | Published - 2024 |
Event | 41st International Conference on Machine Learning, ICML 2024 - Vienna, Austria Duration: Jul 21 2024 → Jul 27 2024 |
ASJC Scopus subject areas
- Artificial Intelligence
- Software
- Control and Systems Engineering
- Statistics and Probability