Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging

Brandon Redding, Alexander Cerjan, Xue Huang, Minjoo Larry Lee, A. Douglas Stone, Michael A. Choma, Hui Cao

Research output: Contribution to journalArticlepeer-review

Abstract

The spatial coherence of laser sources has limited their application to parallel imaging and projection due to coherent artifacts, such as speckle. In contrast, traditional incoherent light sources, such as thermal sources or light emitting diodes (LEDs), provide relatively low power per independent spatial mode. Here, we present a chipscale, electrically pumped semiconductor laser based on a novel design, demonstrating high power per mode with much lower spatial coherence than conventional laser sources. The laser resonator was fabricated with a chaotic, D-shaped cavity optimized to achieve highly multimode lasing. Lasing occurs simultaneously and independently in ∼1,000 modes, and hence the total emission exhibits very low spatial coherence. Speckle-free full-field imaging is demonstrated using the chaotic cavity laser as the illumination source. The power per mode of the sample illumination is several orders of magnitude higher than that of a LED or thermal light source. Such a compact, low-cost source, which combines the low spatial coherence of a LED with the high spectral radiance of a laser, could enable a wide range of high-speed, full-field imaging and projection applications.

Original languageEnglish (US)
Pages (from-to)1304-1309
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Volume112
Issue number5
DOIs
StatePublished - Feb 3 2015
Externally publishedYes

Keywords

  • Chaotic cavity
  • Mode competition
  • Spatial coherence

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging'. Together they form a unique fingerprint.

Cite this