TY - GEN
T1 - Low-rank sparse learning for robust visual tracking
AU - Zhang, Tianzhu
AU - Ghanem, Bernard
AU - Liu, Si
AU - Ahuja, Narendra
PY - 2012
Y1 - 2012
N2 - In this paper, we propose a new particle-filter based tracking algorithm that exploits the relationship between particles (candidate targets). By representing particles as sparse linear combinations of dictionary templates, this algorithm capitalizes on the inherent low-rank structure of particle representations that are learned jointly. As such, it casts the tracking problem as a low-rank matrix learning problem. This low-rank sparse tracker (LRST) has a number of attractive properties. (1) Since LRST adaptively updates dictionary templates, it can handle significant changes in appearance due to variations in illumination, pose, scale, etc. (2) The linear representation in LRST explicitly incorporates background templates in the dictionary and a sparse error term, which enables LRST to address the tracking drift problem and to be robust against occlusion respectively. (3) LRST is computationally attractive, since the low-rank learning problem can be efficiently solved as a sequence of closed form update operations, which yield a time complexity that is linear in the number of particles and the template size. We evaluate the performance of LRST by applying it to a set of challenging video sequences and comparing it to 6 popular tracking methods. Our experiments show that by representing particles jointly, LRST not only outperforms the state-of-the-art in tracking accuracy but also significantly improves the time complexity of methods that use a similar sparse linear representation model for particles [1].
AB - In this paper, we propose a new particle-filter based tracking algorithm that exploits the relationship between particles (candidate targets). By representing particles as sparse linear combinations of dictionary templates, this algorithm capitalizes on the inherent low-rank structure of particle representations that are learned jointly. As such, it casts the tracking problem as a low-rank matrix learning problem. This low-rank sparse tracker (LRST) has a number of attractive properties. (1) Since LRST adaptively updates dictionary templates, it can handle significant changes in appearance due to variations in illumination, pose, scale, etc. (2) The linear representation in LRST explicitly incorporates background templates in the dictionary and a sparse error term, which enables LRST to address the tracking drift problem and to be robust against occlusion respectively. (3) LRST is computationally attractive, since the low-rank learning problem can be efficiently solved as a sequence of closed form update operations, which yield a time complexity that is linear in the number of particles and the template size. We evaluate the performance of LRST by applying it to a set of challenging video sequences and comparing it to 6 popular tracking methods. Our experiments show that by representing particles jointly, LRST not only outperforms the state-of-the-art in tracking accuracy but also significantly improves the time complexity of methods that use a similar sparse linear representation model for particles [1].
UR - http://www.scopus.com/inward/record.url?scp=84867865809&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84867865809&partnerID=8YFLogxK
U2 - 10.1007/978-3-642-33783-3_34
DO - 10.1007/978-3-642-33783-3_34
M3 - Conference contribution
AN - SCOPUS:84867865809
SN - 9783642337826
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 470
EP - 484
BT - Computer Vision, ECCV 2012 - 12th European Conference on Computer Vision, Proceedings
T2 - 12th European Conference on Computer Vision, ECCV 2012
Y2 - 7 October 2012 through 13 October 2012
ER -