Low-rank approximations for dynamic imaging

Justin P. Haldar, Zhi-Pei Liang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper describes a framework for dynamic imaging based on the representation of a spatiotemporal image as a low-rank matrix. This kind of image modeling is flexible enough to accurately and parsimoniously represent a wide range of dynamic imaging data. Representation using a low-rank model leads to new schemes for data acquisition and image reconstruction, enabling reconstruction from highly-undersampled datasets. Theoretical considerations and algorithms are discussed, and empirical results are provided to illustrate the performance of the approach.

Original languageEnglish (US)
Title of host publication2011 8th IEEE International Symposium on Biomedical Imaging
Subtitle of host publicationFrom Nano to Macro, ISBI'11
Pages1052-1055
Number of pages4
DOIs
StatePublished - 2011
Event2011 8th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI'11 - Chicago, IL, United States
Duration: Mar 30 2011Apr 2 2011

Publication series

NameProceedings - International Symposium on Biomedical Imaging
ISSN (Print)1945-7928
ISSN (Electronic)1945-8452

Other

Other2011 8th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI'11
Country/TerritoryUnited States
CityChicago, IL
Period3/30/114/2/11

Keywords

  • Dynamic Imaging
  • Low-Rank Matrix Recovery
  • Partial Separability

ASJC Scopus subject areas

  • Biomedical Engineering
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Low-rank approximations for dynamic imaging'. Together they form a unique fingerprint.

Cite this