Low power real time signal processing engine for optical coherence tomography systems using multi-core digital signal processor

Murtaza Ali, Renuka Parlapalli, Renu John, Stephen A. Boppart

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Optical Coherence Tomography (OCT) imaging is a high-resolution, sub-surface non-invasive imaging technique, using the principle of low coherence interferometry, that has become increasingly popular for various applications for structural and quantitative imaging [1]. Applications for OCT technology have been demonstrated in ophthalmology, dentistry, cardiology/intravascular imaging, endoscopy and intra-operative surgery, and many new applications are being researched. Due to higher sensitivity and faster rate of image acquisition, frequency domain OCT systems are now replacing the first generation time domain systems. These include spectral domain systems, which use a broadband low coherent source with spectrometer and a line scan camera based receive system, and swept source systems, that use wavelength sweeping source with a photo-detector based receive system. Both of these systems require very similar signal processing to recover the desired image from the captured digitized interference or fringe data.

Original languageEnglish (US)
Title of host publicationOptical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XV
DOIs
StatePublished - 2011
EventOptical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XV - San Francisco, CA, United States
Duration: Jan 24 2011Jan 26 2011

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume7889
ISSN (Print)1605-7422

Other

OtherOptical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XV
Country/TerritoryUnited States
CitySan Francisco, CA
Period1/24/111/26/11

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Atomic and Molecular Physics, and Optics
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Low power real time signal processing engine for optical coherence tomography systems using multi-core digital signal processor'. Together they form a unique fingerprint.

Cite this