Low-Fidelity Gradient Updates for High-Fidelity Reprogrammable Iterative Learning Control

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We propose a novel gradient-based reprogrammable iterative learning control (GRILC) framework for autonomous systems. Performance of trajectory following in autonomous systems is often limited by mismatch between a complex actual model and a simplifed nominal model used in controller design. To overcome this issue, we develop the GRILC framework with offline optimization using the information of the nominal model and the actual trajectory, and online system implementation. In addition, a reprogrammable learning strategy is introduced which incorporates directly the learned primitives stored into a library, for future motion planning. The proposed method is applied to the autonomous time-trialing example. The simulation and experimental results illustrate the effectiveness and robustness of the proposed approach.

Original languageEnglish (US)
Title of host publication2022 American Control Conference, ACC 2022
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4772-4777
Number of pages6
ISBN (Electronic)9781665451963
DOIs
StatePublished - 2022
Event2022 American Control Conference, ACC 2022 - Atlanta, United States
Duration: Jun 8 2022Jun 10 2022

Publication series

NameProceedings of the American Control Conference
Volume2022-June
ISSN (Print)0743-1619

Conference

Conference2022 American Control Conference, ACC 2022
Country/TerritoryUnited States
CityAtlanta
Period6/8/226/10/22

ASJC Scopus subject areas

  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Low-Fidelity Gradient Updates for High-Fidelity Reprogrammable Iterative Learning Control'. Together they form a unique fingerprint.

Cite this