TY - GEN
T1 - Low error efficient computational extractors in the crs model
AU - Garg, Ankit
AU - Kalai, Yael Tauman
AU - Khurana, Dakshita
N1 - Publisher Copyright:
© International Association for Cryptologic Research 2020.
PY - 2020
Y1 - 2020
N2 - In recent years, there has been exciting progress on building two-source extractors for sources with low min-entropy. Unfortunately, all known explicit constructions of two-source extractors in the low entropy regime suffer from non-negligible error, and building such extractors with negligible error remains an open problem. We investigate this problem in the computational setting, and obtain the following results. We construct an explicit 2-source extractor, and even an explicit non-malleable extractor, with negligible error, for sources with low min-entropy, under computational assumptions in the Common Random String (CRS) model. More specifically, we assume that a CRS is generated once and for all, and allow the min-entropy sources to depend on the CRS. We obtain our constructions by using the following transformations. 1.Building on the technique of [5], we show a general transformation for converting any computational 2-source extractor (in the CRS model) into a computational non-malleable extractor (in the CRS model), for sources with similar min-entropy.We emphasize that the resulting computational non-malleable extractor is resilient to arbitrarily many tampering attacks (a property that is impossible to achieve information theoretically). This may be of independent interest.This transformation uses cryptography, and relies on the sub-exponential hardness of the Decisional Diffie Hellman (DDH) assumption.2.Next, using the blueprint of [1], we give a transformation converting our computational non-malleable extractor (in the CRS model) into a computational 2-source extractor for sources with low min-entropy (in the CRS model). Our 2-source extractor works for unbalanced sources: specifically, we require one of the sources to be larger than a specific polynomial in the other.This transformation does not incur any additional assumptions. Our analysis makes a novel use of the leakage lemma of Gentry and Wichs [18].
AB - In recent years, there has been exciting progress on building two-source extractors for sources with low min-entropy. Unfortunately, all known explicit constructions of two-source extractors in the low entropy regime suffer from non-negligible error, and building such extractors with negligible error remains an open problem. We investigate this problem in the computational setting, and obtain the following results. We construct an explicit 2-source extractor, and even an explicit non-malleable extractor, with negligible error, for sources with low min-entropy, under computational assumptions in the Common Random String (CRS) model. More specifically, we assume that a CRS is generated once and for all, and allow the min-entropy sources to depend on the CRS. We obtain our constructions by using the following transformations. 1.Building on the technique of [5], we show a general transformation for converting any computational 2-source extractor (in the CRS model) into a computational non-malleable extractor (in the CRS model), for sources with similar min-entropy.We emphasize that the resulting computational non-malleable extractor is resilient to arbitrarily many tampering attacks (a property that is impossible to achieve information theoretically). This may be of independent interest.This transformation uses cryptography, and relies on the sub-exponential hardness of the Decisional Diffie Hellman (DDH) assumption.2.Next, using the blueprint of [1], we give a transformation converting our computational non-malleable extractor (in the CRS model) into a computational 2-source extractor for sources with low min-entropy (in the CRS model). Our 2-source extractor works for unbalanced sources: specifically, we require one of the sources to be larger than a specific polynomial in the other.This transformation does not incur any additional assumptions. Our analysis makes a novel use of the leakage lemma of Gentry and Wichs [18].
UR - http://www.scopus.com/inward/record.url?scp=85090017838&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85090017838&partnerID=8YFLogxK
U2 - 10.1007/978-3-030-45721-1_14
DO - 10.1007/978-3-030-45721-1_14
M3 - Conference contribution
AN - SCOPUS:85090017838
SN - 9783030457204
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 373
EP - 402
BT - Advances in Cryptology – EUROCRYPT 2020 - 39th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Proceedings
A2 - Canteaut, Anne
A2 - Ishai, Yuval
PB - Springer
T2 - 39th Annual International Conference on the Theory and Applications of Cryptographic Techniques, EUROCRYPT 2020
Y2 - 10 May 2020 through 14 May 2020
ER -