TY - JOUR
T1 - Localization and instability in sheared granular materials
T2 - Role of friction and vibration
AU - Kothari, Konik R.
AU - Elbanna, Ahmed E.
N1 - This work has been supported by the National Science Foundation (CMMI-1435920 and EAR-1345108).
PY - 2017/2/2
Y1 - 2017/2/2
N2 - Shear banding and stick-slip instabilities have been long observed in sheared granular materials. Yet, their microscopic underpinnings, interdependencies, and variability under different loading conditions have not been fully explored. Here we use a nonequilibrium thermodynamics model, the Shear Transformation Zone theory, to investigate the dynamics of strain localization and its connection to stability of sliding in sheared, dry, granular materials. We consider frictional and frictionless grains as well as the presence and absence of acoustic vibrations. Our results suggest that at low and intermediate strain rates, persistent shear bands develop only in the absence of vibrations. Vibrations tend to fluidize the granular network and delocalize slip at these rates. Stick-slip is observed only for frictional grains, and it is confined to the shear band. At high strain rates, stick-slip disappears and the different systems exhibit similar stress-slip response. Changing the vibration intensity, duration or time of application alters the system response and may cause long-lasting rheological changes. We analyze these observations in terms of possible transitions between rate strengthening and rate weakening response facilitated by a competition between shear-induced dilation and vibration-induced compaction. We discuss the implications of our results on dynamic triggering, quiescence, and strength evolution in gouge-filled fault zones.
AB - Shear banding and stick-slip instabilities have been long observed in sheared granular materials. Yet, their microscopic underpinnings, interdependencies, and variability under different loading conditions have not been fully explored. Here we use a nonequilibrium thermodynamics model, the Shear Transformation Zone theory, to investigate the dynamics of strain localization and its connection to stability of sliding in sheared, dry, granular materials. We consider frictional and frictionless grains as well as the presence and absence of acoustic vibrations. Our results suggest that at low and intermediate strain rates, persistent shear bands develop only in the absence of vibrations. Vibrations tend to fluidize the granular network and delocalize slip at these rates. Stick-slip is observed only for frictional grains, and it is confined to the shear band. At high strain rates, stick-slip disappears and the different systems exhibit similar stress-slip response. Changing the vibration intensity, duration or time of application alters the system response and may cause long-lasting rheological changes. We analyze these observations in terms of possible transitions between rate strengthening and rate weakening response facilitated by a competition between shear-induced dilation and vibration-induced compaction. We discuss the implications of our results on dynamic triggering, quiescence, and strength evolution in gouge-filled fault zones.
UR - http://www.scopus.com/inward/record.url?scp=85013632917&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85013632917&partnerID=8YFLogxK
U2 - 10.1103/PhysRevE.95.022901
DO - 10.1103/PhysRevE.95.022901
M3 - Article
C2 - 28297960
AN - SCOPUS:85013632917
SN - 2470-0045
VL - 95
JO - Physical Review E
JF - Physical Review E
IS - 2
M1 - 022901
ER -