Abstract
Wind-tunnel experiments were performed to study the effect of favorable and adverse constant pressure gradients (PG) from local changes in the topography right downwind of a model wind turbine. Particle image velocimetry was used to characterize the near and intermediate wake regions. We explored five scenarios, two favorable, two adverse PG, and a case with negligible PG. Results show that the PGs induce a wake deflection and modulate the wake. They imposed a relatively small impact on the turbulence kinetic energy and kinematic shear stress but a comparatively dominant effect on the bulk flow on the flow recovery. Based on this, a simple formulation is used to describe the impact of PG on the wake. We modeled the base flow through a linearized perturbation method; the wake is obtained by solving a simplified, integrated streamwise momentum equation. This approach reasonably estimated the flow profile and PG-induced power output variations.
Original language | English (US) |
---|---|
Article number | 100297 |
Journal | Theoretical and Applied Mechanics Letters |
Volume | 11 |
Issue number | 5 |
DOIs | |
State | Published - Jul 2021 |
Keywords
- Power output
- Pressure gradient
- Topographic effects
- Turbine wake
ASJC Scopus subject areas
- Computational Mechanics
- Environmental Engineering
- Civil and Structural Engineering
- Biomedical Engineering
- Aerospace Engineering
- Ocean Engineering
- Mechanics of Materials
- Mechanical Engineering