Local stiffness quantification of geogrid-reinforced aggregate base materials using shear waves under repeated loading

Yong Hoon Byun, Erol Tutumluer

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Geogrid-aggregate interlock provides enhanced local stiffness in the vicinity of the installed geogrid and is a responsible mechanism for the improved performance of geogrid base reinforced pavements. The objective of this study was to establish innovative approaches to quantify the local stiffness increase of geogrid-stabilized aggregate samples. Two pairs of bender elements were installed at two different heights of cylindrical specimens in a repeated load triaxial testing device. Resilient modulus testing was conducted on both geogrid reinforced and unreinforced specimens. Through the use of bender elements, the shear waves were measured during the resilient modulus tests. Experimental results show that the shear moduli estimated from the shear wave velocities increase with bulk stress, regardless of geogrid reinforcement. The shear modulus estimated in the vicinity of the geogrid was always greater than that estimated farther away from the geogrid. According to the preliminary tests conducted so far, geogrid-aggregate interlock related local stiffness increase in unbound aggregate base layers can be effectively quantified by using shear waves.

Original languageEnglish (US)
Title of host publicationGeotechnical Special Publication
EditorsThomas L. Brandon, Richard J. Valentine
PublisherAmerican Society of Civil Engineers
Pages220-226
Number of pages7
EditionGSP 280
ISBN (Electronic)9780784480472
DOIs
StatePublished - 2017
EventGeotechnical Frontiers 2017 - Orlando, United States
Duration: Mar 12 2017Mar 15 2017

Publication series

NameGeotechnical Special Publication
NumberGSP 280
Volume0
ISSN (Print)0895-0563

Other

OtherGeotechnical Frontiers 2017
Country/TerritoryUnited States
CityOrlando
Period3/12/173/15/17

ASJC Scopus subject areas

  • Civil and Structural Engineering
  • Architecture
  • Building and Construction
  • Geotechnical Engineering and Engineering Geology

Fingerprint

Dive into the research topics of 'Local stiffness quantification of geogrid-reinforced aggregate base materials using shear waves under repeated loading'. Together they form a unique fingerprint.

Cite this