Local features and kernels for classification of texture and object categories: A comprehensive study

Jianguo Zhang, Marcin Marszałek, Svetlana Lazebnik, Cordelia Schmid

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Recently, methods based on local image features have shown promise for texture and object recognition tasks. This paper presents a large-scale evaluation of an approach that represents images as distributions (signatures or histograms) of features extracted from a sparse set of keypoint locations and learns a Support Vector Machine classifier with kernels based on two effective measures for comparing distributions, the Earth Mover's Distance and the χ2 distance. We first evaluate the performance of our approach with different keypoint detectors and descriptors, as well, as different kernels and classifiers. We then conduct a comparative evaluation with several state-of-the-art recognition methods on 4 texture and 5 object databases. On most of these databases, our implementation exceeds the best reported results and achieves comparable performance on the rest. Finally, we investigate the influence of background correlations on recognition performance.

Original languageEnglish (US)
Title of host publication2006 Conference on Computer Vision and Pattern Recognition Workshop
DOIs
StatePublished - 2006
Event2006 Conference on Computer Vision and Pattern Recognition Workshops - New York, NY, United States
Duration: Jun 17 2006Jun 22 2006

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume2006
ISSN (Print)1063-6919

Other

Other2006 Conference on Computer Vision and Pattern Recognition Workshops
Country/TerritoryUnited States
CityNew York, NY
Period6/17/066/22/06

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Local features and kernels for classification of texture and object categories: A comprehensive study'. Together they form a unique fingerprint.

Cite this