Abstract
The gene encoding the immunosuppressive cytokine viral interleukin-10 (vIL-10) was introduced into BALB/c (H-2(d)) vascularized cardiac allografts by perfusing the graft vasculature with DNA-liposome complexes, utilizing the experimental cationic lipid γAP DLRIE/DOPE and a plasmid encoding vlL-10 under the control of the HCMVie promoter. The DNA to lipid ratio and DNA dose were critical factors in obtaining optimal biologic effects. Gene transfer of vIL-10 with a 3:1 DNA to lipid weight ratio using 375 μg DNA significantly prolonged allograft survival in MHC-mismatched C57BL/6 (H-2b) recipients (16.00 days) compared with both unmodified allografts (8.14 days) and vIL-10 anti-sense controls (8.28 days). Enhanced graft survival was specific to vIL-10 expression since treatment with anti-sense plasmid or anti-vIL-10 monoclonal antibody (mAb) abrogated the effect. Prolonged survival was associated with a novel histology characterized by a moderate mono-nuclear infiltrate, edema, and diffuse fibrillar/collagen deposition in the interstitium. Despite these morphologic changes, myocytes remained viable and vessels were patent. Limiting dilution analysis revealed transient infiltration of IL-2 secreting, donor-reactive, helper T lymphocytes (HTL) and cytotoxic T lymphocytes (CTL) in vIL-10 expressing grafts on day 7, that decreased significantly by day 14. Similarly, vIL-10 gene transfer inhibited the accumulation of donor-specific HTL and CTL in the spleen, compared with antisense controls. Prolonged survival was also associated with a marked decrease in IgM and IgG alloantibody production, with little to no IgG isotype switching. These results show that viral IL-10 gene transfer inhibits graft rejection in a clinically relevant model by inhibiting donor-specific cellular and humoral immune responses.
Original language | English (US) |
---|---|
Pages (from-to) | 1079-1087 |
Number of pages | 9 |
Journal | Gene therapy |
Volume | 5 |
Issue number | 8 |
DOIs | |
State | Published - 1998 |
Externally published | Yes |
Keywords
- Gene transfer
- Immunotherapy
- Transplantation
- Viral interleukin-10 (vIL-10)
ASJC Scopus subject areas
- Molecular Medicine
- Molecular Biology
- Genetics