Linear stability analysis of a premixed flame with transverse shear

Xiaoyi Lu, Carlos Pantano

Research output: Contribution to journalArticlepeer-review

Abstract

One-dimensional planar premixed flames propagating in a uniform flow are susceptible to hydrodynamic instabilities known (generically) as Darrieus-Landau instabilities. Here, we extend that hydrodynamic linear stability analysis to include a lateral shear. This generalization is a situation of interest for laminar and turbulent flames when they travel into a region of shear (such as a jet or shear layer). It is shown that the problem can be formulated and solved analytically and a dispersion relation can be determined. The solution depends on a shear parameter in addition to the wavenumber, thermal expansion ratio, and Markstein lengths. The study of the dispersion relation shows that perturbations have two types of behaviour as wavenumber increases. First, for small shear, we recover the Darrieus-Landau results except for a region at small wavenumbers, large wavelengths, that is stable. Initially, increasing shear has a stabilizing effect. But, for sufficiently high shear, the flame becomes unstable again and its most unstable wavelength can be much smaller than the Markstein length of the zero-shear flame. Finally, the stabilizing effect of low shear can make flames with negative Markstein numbers stable within a band of wavenumbers.

Original languageEnglish (US)
Pages (from-to)150-166
Number of pages17
JournalJournal of Fluid Mechanics
Volume765
DOIs
StatePublished - Feb 25 2015

Keywords

  • flames
  • instability
  • reacting flows

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Linear stability analysis of a premixed flame with transverse shear'. Together they form a unique fingerprint.

Cite this