Limited-Trust in Diffusion of Competing Alternatives Over Social Networks

Research output: Contribution to journalArticlepeer-review

Abstract

We consider the diffusion of two alternatives in social networks using a game-theoretic approach. Each individual plays a coordination game with its neighbors repeatedly and decides which to adopt. As products are used in conjunction with others and through repeated interactions, individuals are more interested in their long-term benefits and tend to show trust to others to maximize their long-term utility by choosing a suboptimal option with respect to instantaneous payoff. To capture such trust behavior, we deploy limited-trust equilibrium (LTE) in diffusion process. We analyze the convergence of emerging dynamics to equilibrium points using mean-field approximation and study the equilibrium state and the convergence rate of diffusion using absorption probability and expected absorption time of a reduced-size absorbing Markov chain. We also show that the diffusion model on LTE under the best-response strategy can be converted to the well-known linear threshold model. Simulation results show that when agents behave trustworthy, their long-term utility will increase significantly compared to the case when they are solely self-interested. Moreover, the Markov chain analysis provides a good estimate of convergence properties over random networks.

Original languageEnglish (US)
Pages (from-to)1320-1336
Number of pages17
JournalIEEE Transactions on Network Science and Engineering
Volume11
Issue number1
DOIs
StatePublished - Jan 1 2024

Keywords

  • Diffusion dynamics
  • Markov chains
  • game theory
  • limited-trust equilibrium
  • social networks

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Computer Networks and Communications
  • Computer Science Applications

Cite this