Lightweight data race detection for production runs

Swarnendu Biswas, Man Cao, Minjia Zhang, Michael D. Bond, Benjamin P. Wood

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

To detect data races that harm production systems, program analysis must target production runs. However, sound and precise data race detection adds too much run-time overhead for use in production systems. Even existing approaches that provide soundness or precision incur significant limitations. This work addresses the need for soundness (no missed races) and precision (no false races) by introducing novel, efficient production-time analyses that address each need separately. (1) Precise data race detection is useful for developers, who want to fix bugs but loathe false positives. We introduce a precise analysis called RaceChaser that provides low, bounded run-time overhead. (2) Sound race detection benefits analyses and tools whose correctness relies on knowledge of all potential data races. We present a sound, efficient approach called Caper that combines static and dynamic analysis to catch all data races in observed runs. Race- Chaser and Caper are useful not only on their own; we introduce a framework that combines these analyses, using Caper as a sound filter for precise data race detection by RaceChaser. Our evaluation shows that RaceChaser and Caper are efficient and effective, and compare favorably with existing state-of-the-art approaches. These results suggest that RaceChaser and Caper enable practical data race detection that is precise and sound, respectively, ultimately leading to more reliable software systems.

Original languageEnglish (US)
Title of host publicationCC 2017 - Proceedings of the 26th International Conference on Compiler Construction, co-located with CGO 2017
EditorsPeng Wu, Sebastian Hack
PublisherAssociation for Computing Machinery
Pages11-21
Number of pages11
ISBN (Electronic)9781450352338
DOIs
StatePublished - Feb 5 2017
Externally publishedYes
Event26th International Conference on Compiler Construction, CC 2017 - Austin, United States
Duration: Feb 5 2017Feb 6 2017

Publication series

NameACM International Conference Proceeding Series

Conference

Conference26th International Conference on Compiler Construction, CC 2017
Country/TerritoryUnited States
CityAustin
Period2/5/172/6/17

Keywords

  • Data races
  • Dynamic analysis
  • Escape analysis
  • Sampling

ASJC Scopus subject areas

  • Software
  • Human-Computer Interaction
  • Computer Vision and Pattern Recognition
  • Computer Networks and Communications

Fingerprint

Dive into the research topics of 'Lightweight data race detection for production runs'. Together they form a unique fingerprint.

Cite this