Lieb-Schultz-Mattis-type theorems and other nonperturbative results for strongly correlated systems with conserved dipole moments

Oleg Dubinkin, Julian May-Mann, Taylor L. Hughes

Research output: Contribution to journalArticlepeer-review

Abstract

Nonperturbative constraints on many-body physics, such as the famous Lieb-Schultz-Mattis theorem, are valuable tools for studying strongly correlated systems. To this end, we present a number of nonperturbative results that constrain the low-energy physics of systems having conserved dipole moments. We find that for these systems, a unique translationally invariant gapped ground state is only possible if the polarization of the system is integer. Furthermore, if a lattice system also has U(1) subsystem charge conservation symmetry, a unique gapped ground state is only possible if the particle filling along these subsystems is integer. We also apply these methods to spin systems, and determine criteria for the existence of a different type of magnetic response plateau in the presence of a nonuniform magnetic field. Finally, we formulate a version of Luttinger's theorem for one-dimensional systems consisting of dipoles.

Original languageEnglish (US)
Article number125133
JournalPhysical Review B
Volume103
Issue number12
DOIs
StatePublished - Mar 15 2021

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Lieb-Schultz-Mattis-type theorems and other nonperturbative results for strongly correlated systems with conserved dipole moments'. Together they form a unique fingerprint.

Cite this