Level-0 structure of level-1 Uq(sl2)-modules and Macdonald polynomials

M. Jimbo, R. Kedem, H. Konno, T. Miwa, J. U.H. Petersen

Research output: Contribution to journalArticlepeer-review

Abstract

The level-1 integrable highest weight modules of Uq(sl 2) admit a level-0 action of the same algebra. This action is defined using the affine Hecke algebra and the basis of the level-1 module generated by components of vertex operators. Each level-1 module is a direct sum of finite-dimensional irreducible level-0 modules, whose highest weight vector is expressed in terms of Macdonald polynomials. This decomposition leads to the fermionic character formula for the level-1 modules.

Original languageEnglish (US)
Article number014
Pages (from-to)5589-5606
Number of pages18
JournalJournal of Physics A: Mathematical and General
Volume28
Issue number19
DOIs
StatePublished - 1995
Externally publishedYes

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Mathematical Physics
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Level-0 structure of level-1 Uq(sl2)-modules and Macdonald polynomials'. Together they form a unique fingerprint.

Cite this