TY - GEN
T1 - LETI
T2 - 2024 Findings of the Association for Computational Linguistics: NAACL 2024
AU - Wang, Xingyao
AU - Peng, Hao
AU - Jabbarvand, Reyhaneh
AU - Ji, Heng
N1 - We thank the anonymous reviewers for their suggestions and comments. This research is based upon work supported by U.S. DARPA ECOLE Program No. HR00112390060 and U.S. DARPA ITM Program No. FA8650-23-C-7316. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of DARPA, or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright annotation therein. This research is supported with Cloud TPUs from Google's TPU Research Cloud (TRC).
PY - 2024
Y1 - 2024
N2 - Fine-tuning pre-trained language models (LMs) is essential for enhancing their capabilities. Existing techniques commonly fine-tune on input-output pairs (e.g., instruction tuning) or with numerical rewards that gauge the output quality (e.g., RLHF). We explore LMs' potential to learn from textual interactions (LETI) that not only check their correctness with binary labels but also pinpoint and explain errors in their outputs through textual feedback. Our focus is the code generation task, where the model produces code based on natural language instructions. This setting invites a natural and scalable way to acquire textual feedback: the error messages and stack traces from code execution using a Python interpreter. LETI iteratively fine-tunes the model, using the LM objective, on a concatenation of natural language instructions, LM-generated programs, and textual feedback. Prepended to this fine-tuning text, a binary reward token is used to differentiate correct and buggy solutions. LETI requires no ground-truth outputs for training and even outperforms a fine-tuned baseline that does. LETI not only improves the performance of LMs on a code generation dataset MBPP, but also generalizes to other datasets. Trained on MBPP, it achieves comparable or better performance than the base LMs on unseen problems in HumanEval. Furthermore, compared to binary feedback, we observe that textual feedback leads to improved generation quality and sample efficiency, achieving the same performance with fewer than half of the gradient steps. LETI is equally applicable in natural language tasks when they can be formulated as code generation, which we empirically verified on event argument extraction.
AB - Fine-tuning pre-trained language models (LMs) is essential for enhancing their capabilities. Existing techniques commonly fine-tune on input-output pairs (e.g., instruction tuning) or with numerical rewards that gauge the output quality (e.g., RLHF). We explore LMs' potential to learn from textual interactions (LETI) that not only check their correctness with binary labels but also pinpoint and explain errors in their outputs through textual feedback. Our focus is the code generation task, where the model produces code based on natural language instructions. This setting invites a natural and scalable way to acquire textual feedback: the error messages and stack traces from code execution using a Python interpreter. LETI iteratively fine-tunes the model, using the LM objective, on a concatenation of natural language instructions, LM-generated programs, and textual feedback. Prepended to this fine-tuning text, a binary reward token is used to differentiate correct and buggy solutions. LETI requires no ground-truth outputs for training and even outperforms a fine-tuned baseline that does. LETI not only improves the performance of LMs on a code generation dataset MBPP, but also generalizes to other datasets. Trained on MBPP, it achieves comparable or better performance than the base LMs on unseen problems in HumanEval. Furthermore, compared to binary feedback, we observe that textual feedback leads to improved generation quality and sample efficiency, achieving the same performance with fewer than half of the gradient steps. LETI is equally applicable in natural language tasks when they can be formulated as code generation, which we empirically verified on event argument extraction.
UR - http://www.scopus.com/inward/record.url?scp=85197941764&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85197941764&partnerID=8YFLogxK
U2 - 10.18653/v1/2024.findings-naacl.16
DO - 10.18653/v1/2024.findings-naacl.16
M3 - Conference contribution
AN - SCOPUS:85197941764
T3 - Findings of the Association for Computational Linguistics: NAACL 2024 - Findings
SP - 223
EP - 239
BT - Findings of the Association for Computational Linguistics
A2 - Duh, Kevin
A2 - Gomez, Helena
A2 - Bethard, Steven
PB - Association for Computational Linguistics (ACL)
Y2 - 16 June 2024 through 21 June 2024
ER -