Least favorable distributions for robust quickest change detection

Jayakrishnan Unnikrishnan, Venugopal V. Veeravalli, Sean Meyn

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We study the problem of robust quickest change detection where the pre-change and post-change distributions are not known exactly but belong to known uncertainty classes of distributions. Both Bayesian and minimax versions of the quickest change detection problem are considered. When the uncertainty classes satisfy some specific conditions, we identify least favorable distributions (LFD's) from the uncertainty classes, and show that the detection rule designed for the LFD's is optimal in a minimax sense. The condition is similar to that required for the existence of LFD's for the robust hypothesis testing problem studied by Huber.

Original languageEnglish (US)
Title of host publication2009 IEEE International Symposium on Information Theory, ISIT 2009
Pages649-653
Number of pages5
DOIs
StatePublished - 2009
Event2009 IEEE International Symposium on Information Theory, ISIT 2009 - Seoul, Korea, Republic of
Duration: Jun 28 2009Jul 3 2009

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
ISSN (Print)2157-8102

Other

Other2009 IEEE International Symposium on Information Theory, ISIT 2009
Country/TerritoryKorea, Republic of
CitySeoul
Period6/28/097/3/09

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Information Systems
  • Modeling and Simulation
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Least favorable distributions for robust quickest change detection'. Together they form a unique fingerprint.

Cite this