Learning with side information through modality hallucination

Judy Hoffman, Saurabh Gupta, Trevor Darrell

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We present a modality hallucination architecture for training an RGB object detection model which incorporates depth side information at training time. Our convolutional hallucination network learns a new and complementary RGB image representation which is taught to mimic convolutional mid-level features from a depth network. At test time images are processed jointly through the RGB and hallucination networks to produce improved detection performance. Thus, our method transfers information commonly extracted from depth training data to a network which can extract that information from the RGB counterpart. We present results on the standard NYUDv2 dataset and report improvement on the RGB detection task.

Original languageEnglish (US)
Title of host publicationProceedings - 29th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016
PublisherIEEE Computer Society
Pages826-834
Number of pages9
ISBN (Electronic)9781467388504
DOIs
StatePublished - Dec 9 2016
Externally publishedYes
Event29th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016 - Las Vegas, United States
Duration: Jun 26 2016Jul 1 2016

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume2016-December
ISSN (Print)1063-6919

Conference

Conference29th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016
Country/TerritoryUnited States
CityLas Vegas
Period6/26/167/1/16

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Learning with side information through modality hallucination'. Together they form a unique fingerprint.

Cite this