Learning to Simulate Human Mobility

Jie Feng, Zeyu Yang, Fengli Xu, Haisu Yu, Mudan Wang, Yong Li

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Realistic simulation of a massive amount of human mobility data is of great use in epidemic spreading modeling and related health policy-making. Existing solutions for mobility simulation can be classified into two categories: model-based methods and model-free methods, which are both limited in generating high-quality mobility data due to the complicated transitions and complex regularities in human mobility. To solve this problem, we propose a model-free generative adversarial framework, which effectively integrates the domain knowledge of human mobility regularity utilized in the model-based methods. In the proposed framework, we design a novel self-attention based sequential modeling network as the generator to capture the complicated temporal transitions in human mobility. To augment the learning power of the generator with the advantages of model-based methods, we design an attention-based region network to introduce the prior knowledge of urban structure to generate a meaningful trajectory. As for the discriminator, we design a mobility regularity-aware loss to distinguish the generated trajectory. Finally, we utilize the mobility regularities of spatial continuity and temporal periodicity to pre-train the generator and discriminator to further accelerate the learning procedure. Extensive experiments on two real-life mobility datasets demonstrate that our framework outperforms seven state-of-the-art baselines significantly in terms of improving the quality of simulated mobility data by 35%. Furthermore, in the simulated spreading of COVID-19, synthetic data from our framework reduces MAPE from 5% ∼ 10% (baseline performance) to 2%.

Original languageEnglish (US)
Title of host publicationKDD 2020 - Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
PublisherAssociation for Computing Machinery
Pages3426-3433
Number of pages8
ISBN (Electronic)9781450379984
DOIs
StatePublished - Aug 23 2020
Event26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2020 - Virtual, Online, United States
Duration: Aug 23 2020Aug 27 2020

Publication series

NameProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

Conference

Conference26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2020
CountryUnited States
CityVirtual, Online
Period8/23/208/27/20

Keywords

  • gan
  • mobility simulation
  • mobility trajectory

ASJC Scopus subject areas

  • Software
  • Information Systems

Fingerprint Dive into the research topics of 'Learning to Simulate Human Mobility'. Together they form a unique fingerprint.

Cite this