Learning to self-train for semi-supervised few-shot classification

Xinzhe Li, Qianru Sun, Yaoyao Liu, Shibao Zheng, Qin Zhou, Tat Seng Chua, Bernt Schiele

Research output: Contribution to journalConference articlepeer-review

Abstract

Few-shot classification (FSC) is challenging due to the scarcity of labeled training data (e.g. only one labeled data point per class). Meta-learning has shown to achieve promising results by learning to initialize a classification model for FSC. In this paper we propose a novel semi-supervised meta-learning method called learning to self-train (LST) that leverages unlabeled data and specifically meta-learns how to cherry-pick and label such unsupervised data to further improve performance. To this end, we train the LST model through a large number of semi-supervised few-shot tasks. On each task, we train a few-shot model to predict pseudo labels for unlabeled data, and then iterate the self-training steps on labeled and pseudo-labeled data with each step followed by fine-tuning. We additionally learn a soft weighting network (SWN) to optimize the self-training weights of pseudo labels so that better ones can contribute more to gradient descent optimization. We evaluate our LST method on two ImageNet benchmarks for semi-supervised few-shot classification and achieve large improvements over the state-of-the-art method. Code is at github.com/xinzheli1217/learning-to-self-train.

Original languageEnglish (US)
JournalAdvances in Neural Information Processing Systems
Volume32
StatePublished - 2019
Externally publishedYes
Event33rd Annual Conference on Neural Information Processing Systems, NeurIPS 2019 - Vancouver, Canada
Duration: Dec 8 2019Dec 14 2019

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Learning to self-train for semi-supervised few-shot classification'. Together they form a unique fingerprint.

Cite this