Learning the geometry of wave-based imaging

Konik Kothari, Maarten de Hoop, Ivan Dokmanic

Research output: Contribution to journalConference articlepeer-review


We propose a general physics-based deep learning architecture for wave-based imaging problems. A key difficulty in imaging problems with a varying background wave speed is that the medium “bends” the waves differently depending on their position and direction. This space-bending geometry makes the equivariance to translations of convolutional networks an undesired inductive bias. We build an interpretable neural architecture inspired by Fourier integral operators (FIOs) which approximate the wave physics. FIOs model a wide range of imaging modalities, from seismology and radar to Doppler and ultrasound. We focus on learning the geometry of wave propagation captured by FIOs, which is implicit in the data, via a loss based on optimal transport. The proposed FIONet performs significantly better than the usual baselines on a number of imaging inverse problems, especially in out-of-distribution tests.

Original languageEnglish (US)
JournalAdvances in Neural Information Processing Systems
StatePublished - 2020
Externally publishedYes
Event34th Conference on Neural Information Processing Systems, NeurIPS 2020 - Virtual, Online
Duration: Dec 6 2020Dec 12 2020

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing


Dive into the research topics of 'Learning the geometry of wave-based imaging'. Together they form a unique fingerprint.

Cite this