LEARNING STRUCTURED REPRESENTATIONS BY EMBEDDING CLASS HIERARCHY

Siqi Zeng, Remi Tachet des Combes, Han Zhao

Research output: Contribution to conferencePaperpeer-review

Abstract

Existing models for learning representations in supervised classification problems are permutation invariant with respect to class labels. However, structured knowledge about the classes, such as hierarchical label structures, widely exists in many real-world datasets, e.g., the ImageNet and CIFAR benchmarks. How to learn representations that can preserve such structures among the classes remains an open problem. To approach this problem, given a tree of class hierarchy, we first define a tree metric between any pair of nodes in the tree to be the length of the shortest path connecting them. We then provide a method to learn the hierarchical relationship of class labels by approximately embedding the tree metric in the Euclidean space of features. More concretely, during supervised training, we propose to use the Cophenetic Correlation Coefficient (CPCC) as a regularizer for the cross-entropy loss to correlate the tree metric of classes and the Euclidean distance in the class-conditioned representations. Our proposed regularizer is computationally lightweight and easy to implement. Empirically, we demonstrate that this approach can help to learn more interpretable representations due to the preservation of the tree metric, and leads to better generalization in-distribution as well as under sub-population shifts over multiple datasets.

Original languageEnglish (US)
StatePublished - 2023
Event11th International Conference on Learning Representations, ICLR 2023 - Kigali, Rwanda
Duration: May 1 2023May 5 2023

Conference

Conference11th International Conference on Learning Representations, ICLR 2023
Country/TerritoryRwanda
CityKigali
Period5/1/235/5/23

ASJC Scopus subject areas

  • Language and Linguistics
  • Computer Science Applications
  • Education
  • Linguistics and Language

Fingerprint

Dive into the research topics of 'LEARNING STRUCTURED REPRESENTATIONS BY EMBEDDING CLASS HIERARCHY'. Together they form a unique fingerprint.

Cite this