Learning structure in gene expression data using deep architectures, with an application to gene clustering

Aman Gupta, Haohan Wang, Madhavi Ganapathiraju

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Genes play a central role in all biological processes. DNA microarray technology has made it possible to study the expression behavior of thousands of genes in one go. Often, gene expression data is used to generate features for supervised and unsupervised learning tasks. At the same time, advances in the field of deep learning have made available a plethora of architectures. In this paper, we use deep architectures pre-trained in an unsupervised manner using denoising autoencoders as a preprocessing step for a popular unsupervised learning task. Denoising autoencoders (DA) can be used to learn a compact representation of input, and have been used to generate features for further supervised learning tasks. We propose that our deep architectures can be treated as empirical versions of Deep Belief Networks (DBNs). We use our deep architectures to regenerate gene expression time series data for two different data sets. We test our hypothesis on two popular datasets for the unsupervised learning task of clustering and find promising improvements in performance.

Original languageEnglish (US)
Title of host publicationProceedings - 2015 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2015
Editorslng. Matthieu Schapranow, Jiayu Zhou, Xiaohua Tony Hu, Bin Ma, Sanguthevar Rajasekaran, Satoru Miyano, Illhoi Yoo, Brian Pierce, Amarda Shehu, Vijay K. Gombar, Brian Chen, Vinay Pai, Jun Huan
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1328-1335
Number of pages8
ISBN (Electronic)9781467367981
DOIs
StatePublished - Dec 16 2015
Externally publishedYes
EventIEEE International Conference on Bioinformatics and Biomedicine, BIBM 2015 - Washington, United States
Duration: Nov 9 2015Nov 12 2015

Conference

ConferenceIEEE International Conference on Bioinformatics and Biomedicine, BIBM 2015
Country/TerritoryUnited States
CityWashington
Period11/9/1511/12/15

Keywords

  • autoencoders
  • deep learning
  • gene clustering
  • gene expression

ASJC Scopus subject areas

  • Software
  • Artificial Intelligence
  • Health Informatics
  • Biomedical Engineering

Fingerprint

Dive into the research topics of 'Learning structure in gene expression data using deep architectures, with an application to gene clustering'. Together they form a unique fingerprint.

Cite this