Learning stroke treatment progression models for an MDP clinical decision support system

Dan C. Coroian, Kris Hauser

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper describes a clinical decision support framework in multi-step health care domains that can dynamically recommend optimal treatment plans with respect to both patient outcomes and expected treatment cost. Our system uses a modified POMDP framework in which hidden states are not explicitly modeled, but rather, probabilistic models for predicting future observables given observation and action histories are learned directly from electronic health record (EHR) data. High quality treatment recommendations are found using a sampling-based tree growing approach which produces good results despite only exploring a fraction of the observation and action spaces. We describe the application of the approach to an ischemic stroke domain with clinical trial data (International Stroke Trial Dataset, 1993-1996). The dataset is of moderate size (N= 19, 435) and exhibits many characteristics of real EHR data, including noise, missing values, and idiosyncratic coding. The system's predictive model was chosen using cross-validated model selection from a set of several candidate learning methods, including logistic regression, Naïve Bayes, Bayes nets, and random forests. Simulations suggest that the optimized decisions improve patient outcomes, such as 6-month survival rate, compared to the decisions of human doctors during the study.

Original languageEnglish (US)
Title of host publicationSIAM International Conference on Data Mining 2015, SDM 2015
EditorsSuresh Venkatasubramanian, Jieping Ye
PublisherSociety for Industrial and Applied Mathematics Publications
Pages676-684
Number of pages9
ISBN (Electronic)9781510811522
DOIs
StatePublished - 2015
Externally publishedYes
EventSIAM International Conference on Data Mining 2015, SDM 2015 - Vancouver, Canada
Duration: Apr 30 2015May 2 2015

Publication series

NameSIAM International Conference on Data Mining 2015, SDM 2015

Other

OtherSIAM International Conference on Data Mining 2015, SDM 2015
Country/TerritoryCanada
CityVancouver
Period4/30/155/2/15

Keywords

  • Decision-making
  • Health care
  • Machine learning
  • Markov Decision Processes
  • Optimization
  • Time-series models

ASJC Scopus subject areas

  • Computational Theory and Mathematics
  • Computer Vision and Pattern Recognition
  • Software

Fingerprint

Dive into the research topics of 'Learning stroke treatment progression models for an MDP clinical decision support system'. Together they form a unique fingerprint.

Cite this