Learning on Graph with Laplacian Regularization

Rie Kubota Ando, Tong Zhang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We consider a general form of transductive learning on graphs with Laplacian regularization, and derive margin-based generalization bounds using appropriate geometric properties of the graph. We use this analysis to obtain a better understanding of the role of normalization of the graph Laplacian matrix as well as the effect of dimension reduction. The results suggest a limitation of the standard degree-based normalization. We propose a remedy from our analysis and demonstrate empirically that the remedy leads to improved classification performance.

Original languageEnglish (US)
Title of host publicationNIPS 2006
Subtitle of host publicationProceedings of the 19th International Conference on Neural Information Processing Systems
EditorsBernhard Scholkopf, John C. Platt, Thomas Hofmann
PublisherMIT Press Journals
Pages25-32
Number of pages8
ISBN (Electronic)0262195682, 9780262195683
StatePublished - 2006
Externally publishedYes
Event19th International Conference on Neural Information Processing Systems, NIPS 2006 - Vancouver, Canada
Duration: Dec 4 2006Dec 7 2006

Publication series

NameNIPS 2006: Proceedings of the 19th International Conference on Neural Information Processing Systems

Conference

Conference19th International Conference on Neural Information Processing Systems, NIPS 2006
Country/TerritoryCanada
CityVancouver
Period12/4/0612/7/06

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Learning on Graph with Laplacian Regularization'. Together they form a unique fingerprint.

Cite this