TY - GEN
T1 - Learning Node Abnormality with Weak Supervision
AU - Zhou, Qinghai
AU - Ding, Kaize
AU - Liu, Huan
AU - Tong, Hanghang
N1 - Publisher Copyright:
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
PY - 2023/10/21
Y1 - 2023/10/21
N2 - Graph anomaly detection aims to identify the atypical substructures and has attracted an increasing amount of research attention due to its profound impacts in a variety of application domains, including social network analysis, security, finance, and many more. The lack of prior knowledge of the ground-truth anomaly has been a major obstacle in acquiring fine-grained annotations (e.g., anomalous nodes), therefore, a plethora of existing methods have been developed either with a limited number of node-level supervision or in an unsupervised manner. Nonetheless, annotations for coarse-grained graph elements (e.g., a suspicious group of nodes), which often require marginal human effort in terms of time and expertise, are comparatively easier to obtain. Therefore, it is appealing to investigate anomaly detection in a weakly-supervised setting and to establish the intrinsic relationship between annotations at different levels of granularity. In this paper, we tackle the challenging problem of weakly-supervised graph anomaly detection with coarse-grained supervision by (1) proposing a novel architecture of graph neural network with attention mechanism named Wedge that can identify the critical node-level anomaly given a few labels of anomalous subgraphs, and (2) designing a novel objective with contrastive loss that facilitates node representation learning by enforcing distinctive representations between normal and abnormal graph elements. Through extensive evaluations on real-world datasets, we corroborate the efficacy of our proposed method, improving AUC-ROC by up to 16.48% compared to the best competitor.
AB - Graph anomaly detection aims to identify the atypical substructures and has attracted an increasing amount of research attention due to its profound impacts in a variety of application domains, including social network analysis, security, finance, and many more. The lack of prior knowledge of the ground-truth anomaly has been a major obstacle in acquiring fine-grained annotations (e.g., anomalous nodes), therefore, a plethora of existing methods have been developed either with a limited number of node-level supervision or in an unsupervised manner. Nonetheless, annotations for coarse-grained graph elements (e.g., a suspicious group of nodes), which often require marginal human effort in terms of time and expertise, are comparatively easier to obtain. Therefore, it is appealing to investigate anomaly detection in a weakly-supervised setting and to establish the intrinsic relationship between annotations at different levels of granularity. In this paper, we tackle the challenging problem of weakly-supervised graph anomaly detection with coarse-grained supervision by (1) proposing a novel architecture of graph neural network with attention mechanism named Wedge that can identify the critical node-level anomaly given a few labels of anomalous subgraphs, and (2) designing a novel objective with contrastive loss that facilitates node representation learning by enforcing distinctive representations between normal and abnormal graph elements. Through extensive evaluations on real-world datasets, we corroborate the efficacy of our proposed method, improving AUC-ROC by up to 16.48% compared to the best competitor.
KW - Graph anomaly detection
KW - Weak supervision
UR - http://www.scopus.com/inward/record.url?scp=85178144417&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85178144417&partnerID=8YFLogxK
U2 - 10.1145/3583780.3614950
DO - 10.1145/3583780.3614950
M3 - Conference contribution
AN - SCOPUS:85178144417
T3 - International Conference on Information and Knowledge Management, Proceedings
SP - 3584
EP - 3594
BT - CIKM 2023 - Proceedings of the 32nd ACM International Conference on Information and Knowledge Management
PB - Association for Computing Machinery
T2 - 32nd ACM International Conference on Information and Knowledge Management, CIKM 2023
Y2 - 21 October 2023 through 25 October 2023
ER -