Learning large-scale automatic image colorization

Aditya Deshpande, Jason Rock, David Forsyth

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We describe an automated method for image colorization that learns to colorize from examples. Our method exploits a LEARCH framework to train a quadratic objective function in the chromaticity maps, comparable to a Gaussian random field. The coefficients of the objective function are conditioned on image features, using a random forest. The objective function admits correlations on long spatial scales, and can control spatial error in the colorization of the image. Images are then colorized by minimizing this objective function. We demonstrate that our method strongly outperforms a natural baseline on large-scale experiments with images of real scenes using a demanding loss function. We demonstrate that learning a model that is conditioned on scene produces improved results. We show how to incorporate a desired color histogram into the objective function, and that doing so can lead to further improvements in results.

Original languageEnglish (US)
Title of host publication2015 International Conference on Computer Vision, ICCV 2015
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages567-575
Number of pages9
ISBN (Electronic)9781467383912
DOIs
StatePublished - Feb 17 2015
Event15th IEEE International Conference on Computer Vision, ICCV 2015 - Santiago, Chile
Duration: Dec 11 2015Dec 18 2015

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
Volume2015 International Conference on Computer Vision, ICCV 2015
ISSN (Print)1550-5499

Other

Other15th IEEE International Conference on Computer Vision, ICCV 2015
Country/TerritoryChile
CitySantiago
Period12/11/1512/18/15

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Learning large-scale automatic image colorization'. Together they form a unique fingerprint.

Cite this