Learning image similarity from Flickr groups using stochastic intersection Kernel machines

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Measuring image similarity is a central topic in computer vision. In this paper, we learn similarity from Flickr groups and use it to organize photos. Two images are similar if they are likely to belong to the same Flickr groups. Our approach is enabled by a fast Stochastic Intersection Kernel MAchine (SIKMA) training algorithm, which we propose. This proposed training method will be useful for many vision problems, as it can produce a classifier that is more accurate than a linear classifier, trained on tens of thousands of examples in two minutes. The experimental results show our approach performs better on image matching, retrieval, and classification than using conventional visual features.

Original languageEnglish (US)
Title of host publication2009 IEEE 12th International Conference on Computer Vision, ICCV 2009
Pages428-435
Number of pages8
DOIs
StatePublished - 2009
Event12th International Conference on Computer Vision, ICCV 2009 - Kyoto, Japan
Duration: Sep 29 2009Oct 2 2009

Publication series

NameProceedings of the IEEE International Conference on Computer Vision

Other

Other12th International Conference on Computer Vision, ICCV 2009
Country/TerritoryJapan
CityKyoto
Period9/29/0910/2/09

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Learning image similarity from Flickr groups using stochastic intersection Kernel machines'. Together they form a unique fingerprint.

Cite this