Learning Hierarchical Control for Robust In-Hand Manipulation

Tingguang Li, Krishnan Srinivasan, Max Qing Hu Meng, Wenzhen Yuan, Jeannette Bohg

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Robotic in-hand manipulation has been a longstanding challenge due to the complexity of modelling hand and object in contact and of coordinating finger motion for complex manipulation sequences. To address these challenges, the majority of prior work has either focused on model-based, low-level controllers or on model-free deep reinforcement learning that each have their own limitations. We propose a hierarchical method that relies on traditional, model-based controllers on the low-level and learned policies on the mid-level. The low-level controllers can robustly execute different manipulation primitives (reposing, sliding, flipping). The mid-level policy orchestrates these primitives. We extensively evaluate our approach in simulation with a 3-fingered hand that controls three degrees of freedom of elongated objects. We show that our approach can move objects between almost all the possible poses in the workspace while keeping them firmly grasped. We also show that our approach is robust to inaccuracies in the object models and to observation noise. Finally, we show how our approach generalizes to objects of other shapes.

Original languageEnglish (US)
Title of host publication2020 IEEE International Conference on Robotics and Automation, ICRA 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages8855-8862
Number of pages8
ISBN (Electronic)9781728173955
DOIs
StatePublished - May 2020
Externally publishedYes
Event2020 IEEE International Conference on Robotics and Automation, ICRA 2020 - Paris, France
Duration: May 31 2020Aug 31 2020

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Conference

Conference2020 IEEE International Conference on Robotics and Automation, ICRA 2020
Country/TerritoryFrance
CityParis
Period5/31/208/31/20

ASJC Scopus subject areas

  • Software
  • Control and Systems Engineering
  • Artificial Intelligence
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Learning Hierarchical Control for Robust In-Hand Manipulation'. Together they form a unique fingerprint.

Cite this