Learning Discrete-Time Major-Minor Mean Field Games

Kai Cui, Gökçe Dayanıklı, Mathieu Laurière, Matthieu Geist, Olivier Pietquin, Heinz Koeppl

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Recent techniques based on Mean Field Games (MFGs) allow the scalable analysis of multi-player games with many similar, rational agents. However, standard MFGs remain limited to homogeneous players that weakly influence each other, and cannot model major players that strongly influence other players, severely limiting the class of problems that can be handled. We propose a novel discrete time version of major-minor MFGs (M3FGs), along with a learning algorithm based on fictitious play and partitioning the probability simplex. Importantly, M3FGs generalize MFGs with common noise and can handle not only random exogeneous environment states but also major players. A key challenge is that the mean field is stochastic and not deterministic as in standard MFGs. Our theoretical investigation verifies both the M3FG model and its algorithmic solution, showing firstly the well-posedness of the M3FG model starting from a finite game of interest, and secondly convergence and approximation guarantees of the fictitious play algorithm. Then, we empirically verify the obtained theoretical results, ablating some of the theoretical assumptions made, and show successful equilibrium learning in three example problems. Overall, we establish a learning framework for a novel and broad class of tractable games.

Original languageEnglish (US)
Title of host publicationTechnical Tracks 14
EditorsMichael Wooldridge, Jennifer Dy, Sriraam Natarajan
PublisherAssociation for the Advancement of Artificial Intelligence
Pages9616-9625
Number of pages10
Edition9
ISBN (Electronic)1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879
DOIs
StatePublished - Mar 25 2024
Event38th AAAI Conference on Artificial Intelligence, AAAI 2024 - Vancouver, Canada
Duration: Feb 20 2024Feb 27 2024

Publication series

NameProceedings of the AAAI Conference on Artificial Intelligence
Number9
Volume38
ISSN (Print)2159-5399
ISSN (Electronic)2374-3468

Conference

Conference38th AAAI Conference on Artificial Intelligence, AAAI 2024
Country/TerritoryCanada
CityVancouver
Period2/20/242/27/24

ASJC Scopus subject areas

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Learning Discrete-Time Major-Minor Mean Field Games'. Together they form a unique fingerprint.

Cite this