Learning deep structured models

Liang Chieh Chen, Alexander G. Schwing, Alan L. Yuille, Raquel Urtasun

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Many problems in real-world applications involve predicting several random variables that are statistically related. Markov random fields (MRFs) are a great mathematical tool to encode such dependencies. The goal of this paper is to combine MRFs with deep learning to estimate complex representations while taking into account the dependencies between the output random variables. Towards this goal, we propose a training algorithm that is able to learn structured models jointly with deep features that form the MRF potentials. Our approach is efficient as it blends learning and inference and makes use of GPU acceleration. We demonstrate the effectiveness of our algorithm in the tasks of predicting words from noisy images, as well as tagging of Flickr photographs. We show that joint learning of the deep features and the MRF parameters results in significant performance gains.

Original languageEnglish (US)
Title of host publication32nd International Conference on Machine Learning, ICML 2015
EditorsFrancis Bach, David Blei
PublisherInternational Machine Learning Society (IMLS)
Pages1785-1794
Number of pages10
ISBN (Electronic)9781510810587
StatePublished - 2015
Externally publishedYes
Event32nd International Conference on Machine Learning, ICML 2015 - Lile, France
Duration: Jul 6 2015Jul 11 2015

Publication series

Name32nd International Conference on Machine Learning, ICML 2015
Volume3

Other

Other32nd International Conference on Machine Learning, ICML 2015
Country/TerritoryFrance
CityLile
Period7/6/157/11/15

ASJC Scopus subject areas

  • Human-Computer Interaction
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'Learning deep structured models'. Together they form a unique fingerprint.

Cite this