Abstract
In this paper we aim at facilitating generalization for deep networks while supporting interpretability of the learned representations. Towards this goal, we propose a clustering based regularization that encourages parsimonious representations. Our k-means style objective is easy to optimize and flexible, supporting various forms of clustering, such as sample clustering, spatial clustering, as well as co-clustering. We demonstrate the effectiveness of our approach on the tasks of unsupervised learning, classification, fine grained categorization, and zero-shot learning.
Original language | English (US) |
---|---|
Pages (from-to) | 5092-5100 |
Number of pages | 9 |
Journal | Advances in Neural Information Processing Systems |
State | Published - 2016 |
Event | 30th Annual Conference on Neural Information Processing Systems, NIPS 2016 - Barcelona, Spain Duration: Dec 5 2016 → Dec 10 2016 |
ASJC Scopus subject areas
- Computer Networks and Communications
- Information Systems
- Signal Processing