Learning Compositional Koopman Operators for Model-Based Control

Yunzhu Li, Hao He, Jiajun Wu, Dina Katabi, Antonio Torralba

Research output: Contribution to conferencePaperpeer-review

Abstract

Finding an embedding space for a linear approximation of a nonlinear dynamical system enables efficient system identification and control synthesis. The Koopman operator theory lays the foundation for identifying the nonlinear-to-linear coordinate transformations with data-driven methods. Recently, researchers have proposed to use deep neural networks as a more expressive class of basis functions for calculating the Koopman operators. These approaches, however, assume a fixed dimensional state space; they are therefore not applicable to scenarios with a variable number of objects. In this paper, we propose to learn compositional Koopman operators, using graph neural networks to encode the state into object-centric embeddings and using a block-wise linear transition matrix to regularize the shared structure across objects. The learned dynamics can quickly adapt to new environments of unknown physical parameters and produce control signals to achieve a specified goal. Our experiments on manipulating ropes and controlling soft robots show that the proposed method has better efficiency and generalization ability than existing baselines.

Original languageEnglish (US)
StatePublished - 2020
Externally publishedYes
Event8th International Conference on Learning Representations, ICLR 2020 - Addis Ababa, Ethiopia
Duration: Apr 30 2020 → …

Conference

Conference8th International Conference on Learning Representations, ICLR 2020
Country/TerritoryEthiopia
CityAddis Ababa
Period4/30/20 → …

ASJC Scopus subject areas

  • Education
  • Linguistics and Language
  • Language and Linguistics
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'Learning Compositional Koopman Operators for Model-Based Control'. Together they form a unique fingerprint.

Cite this