Learning and Autonomy for Extraterrestrial Terrain Sampling: An Experience Report from OWLAT Deployment

Pranay Thangeda, Yifan Zhu, Kris Hauser, Melkior Ornik, Ashish Goel, Erica L. Tevere, Adriana Daca, Hari D. Nayar, Erik Kramer

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Extraterrestrial autonomous lander missions increasingly demand adaptive capabilities to handle the unpredictable and diverse nature of the terrain. This paper discusses the deployment of a Deep Meta-Learning with Controlled Deployment Gaps (CoDeGa) trained model for terrain scooping tasks in Ocean Worlds Lander Autonomy Testbed (OWLAT) at NASA Jet Propulsion Laboratory. The CoDeGa-powered scooping strategy is designed to adapt to novel terrains, selecting scooping actions based on the available RGB-D image data and limited experience. The paper presents our experiences with transferring the scooping framework with CoDeGa-trained model from a low-fidelity testbed to the high-fidelity OWLAT testbed. Additionally, it validates the method’s performance in novel, realistic environments, and shares the lessons learned from deploying learning-based autonomy algorithms for space exploration. Experimental results from OWLAT substantiate the efficacy of CoDeGa in rapidly adapting toun familiar terrains and effectively making autonomous decisions under considerable doma inshifts, thereby endorsing its potential utility in future extraterrestrial missions.

Original languageEnglish (US)
Title of host publicationAIAA SciTech Forum and Exposition, 2024
PublisherAmerican Institute of Aeronautics and Astronautics Inc, AIAA
ISBN (Print)9781624107115
DOIs
StatePublished - 2024
EventAIAA SciTech Forum and Exposition, 2024 - Orlando, United States
Duration: Jan 8 2024Jan 12 2024

Publication series

NameAIAA SciTech Forum and Exposition, 2024

Conference

ConferenceAIAA SciTech Forum and Exposition, 2024
Country/TerritoryUnited States
CityOrlando
Period1/8/241/12/24

ASJC Scopus subject areas

  • Aerospace Engineering

Fingerprint

Dive into the research topics of 'Learning and Autonomy for Extraterrestrial Terrain Sampling: An Experience Report from OWLAT Deployment'. Together they form a unique fingerprint.

Cite this