Learning a sequential search for landmarks

Saurabh Singh, Derek Hoiem, David Forsyth

Research output: Chapter in Book/Report/Conference proceedingConference contribution


We propose a general method to find landmarks in images of objects using both appearance and spatial context. This method is applied without changes to two problems: parsing human body layouts, and finding landmarks in images of birds. Our method learns a sequential search for localizing landmarks, iteratively detecting new landmarks given the appearance and contextual information from the already detected ones. The choice of landmark to be added is opportunistic and depends on the image; for example, in one image a head-shoulder group might be expanded to a head-shoulder-hip group but in a different image to a head-shoulder-elbow group. The choice of initial landmark is similarly image dependent. Groups are scored using a learned function, which is used to expand them greedily. Our scoring function is learned from data labelled with landmarks but without any labeling of a detection order. Our method represents a novel spatial model for the kinematics of groups of landmarks, and displays strong performance on two different model problems.

Original languageEnglish (US)
Title of host publicationIEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015
PublisherIEEE Computer Society
Number of pages9
ISBN (Electronic)9781467369640
StatePublished - Oct 14 2015
EventIEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015 - Boston, United States
Duration: Jun 7 2015Jun 12 2015

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN (Print)1063-6919


OtherIEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015
CountryUnited States

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint Dive into the research topics of 'Learning a sequential search for landmarks'. Together they form a unique fingerprint.

Cite this