Leaky Rayleigh and Scholte waves at the fluid-solid interface subjected to transient point loading

Jinying Zhu, John S. Popovics, Frank Schubert

Research output: Contribution to journalArticlepeer-review

Abstract

The analysis of acoustic waves generated by a transient normal point load applied on a fluid-solid interface is presented. The closed-form exact solution of the wave motion is obtained by using integral transform techniques. The obtained analytical solution provides necessary theoretical background for optimization of fluid-coupled ultrasonic and acoustic wave detection in experiments. Numerical simulation (elastodynamic finite integration technique) is performed to verify the obtained analytical solution. Detailed descriptions of leaky Rayleigh and Scholte wave solutions are presented. A simplified solution to isolate the contributions of leaky Rayleigh and Scholte waves generated by a transient point load is proposed, and closed-form formulations for displacement and stress components are then presented. The simplified solution is compared to the exact solution for two configurations: water/concrete and air/concrete. The excitation effectiveness of leaky Rayleigh waves for the air/concrete configuration is studied, which has practical significance to air-coupled sensing in civil engineering structures.

Original languageEnglish (US)
Pages (from-to)2101-2110
Number of pages10
JournalJournal of the Acoustical Society of America
Volume116
Issue number4 I
DOIs
StatePublished - Oct 2004

ASJC Scopus subject areas

  • Arts and Humanities (miscellaneous)
  • Acoustics and Ultrasonics

Fingerprint

Dive into the research topics of 'Leaky Rayleigh and Scholte waves at the fluid-solid interface subjected to transient point loading'. Together they form a unique fingerprint.

Cite this