Lazy collision checking in asymptotically-optimal motion planning

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Asymptotically-optimal sampling-based motion planners, like RRT∗, perform vast amounts of collision checking, and are hence rather slow to converge in complex problems where collision checking is relatively expensive. This paper presents two novel motion planners, Lazy-PRM∗ and Lazy-RRG∗, that eliminate the majority of collision checks using a lazy strategy. They are sampling-based, any-time, and asymptotically complete algorithms that grow a network of feasible vertices connected by edges. Edges are not immediately checked for collision, but rather are checked only when a better path to the goal is found. This strategy avoids checking the vast majority of edges that have no chance of being on an optimal path. Experiments show that the new methods converge toward the optimum substantially faster than existing planners on rigid body path planning and robot manipulation problems.

Original languageEnglish (US)
Title of host publication2015 IEEE International Conference on Robotics and Automation, ICRA 2015
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2951-2957
Number of pages7
EditionJune
ISBN (Electronic)9781479969234
DOIs
StatePublished - Jun 29 2015
Externally publishedYes
Event2015 IEEE International Conference on Robotics and Automation, ICRA 2015 - Seattle, United States
Duration: May 26 2015May 30 2015

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
NumberJune
Volume2015-June
ISSN (Print)1050-4729

Other

Other2015 IEEE International Conference on Robotics and Automation, ICRA 2015
Country/TerritoryUnited States
CitySeattle
Period5/26/155/30/15

ASJC Scopus subject areas

  • Software
  • Control and Systems Engineering
  • Electrical and Electronic Engineering
  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Lazy collision checking in asymptotically-optimal motion planning'. Together they form a unique fingerprint.

Cite this