Layered accretion in T tauri disks

Research output: Contribution to journalArticlepeer-review


We put forward a model for accretion disks around T Tauri stars. The model assumes that angular momentum transport is driven by magnetic fields and can occur only in those parts of the disk that are sufficiently ionized that the gas can couple to the magnetic field. These regions lie at R ≲ 0.1 AU, where collisional ionization is effective, and at R ≳ 0.1 AU in a layer of thickness ≈ 100 g cm-2 at the surface of the disk where cosmic-ray ionization is effective. The model predicts that the stellar accretion rate is about 10-8M yr-1, independent of the rate of infall onto the disk. Matter that is not accreted onto the star accumulates in the inner few AU of the disk at a rate of about 10-3 M in 104 yr. Given this buildup it is unlikely that accretion is steady. The effective temperature profile is Te ∼ r-1/2 outside of 0.1 AU, which differs from the canonical Te ∼ r-3/4. We calculate the expected spectral energy distribution for the disk and show that this temperature profile produces an infrared excess. Finally, we discuss some of the leading uncertainties in the theory.

Original languageEnglish (US)
Pages (from-to)355-362
Number of pages8
JournalAstrophysical Journal
Issue number1 PART I
StatePublished - 1996
Externally publishedYes


  • Accretion, accretion disks
  • Stars: Magnetic fields
  • Stars: Pre-main-sequence

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science


Dive into the research topics of 'Layered accretion in T tauri disks'. Together they form a unique fingerprint.

Cite this