Latent aspect rating analysis without aspect keyword supervision

Hongning Wang, Yue Lu, Cheng Xiang Zhai

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Mining detailed opinions buried in the vast amount of review text data is an important, yet quite challenging task with widespread applications in multiple domains. Latent Aspect Rating Analysis (LARA) refers to the task of inferring both opinion ratings on topical aspects (e.g., location, service of a hotel) and the relative weights reviewers have placed on each aspect based on review content and the associated overall ratings. A major limitation of previous work on LARA is the assumption of pre-specified aspects by keywords. However, the aspect information is not always available, and it may be difficult to pre-define appropriate aspects without a good knowledge about what aspects are actually commented on in the reviews. In this paper, we propose a unified generative model for LARA, which does not need pre-specified aspect keywords and simultaneously mines 1) latent topical aspects, 2) ratings on each identified aspect, and 3) weights placed on different aspects by a reviewer. Experiment results on two different review data sets demonstrate that the proposed model can effectively perform the Latent Aspect Rating Analysis task without the supervision of aspect keywords. Because of its generality, the proposed model can be applied to explore all kinds of opinionated text data containing overall sentiment judgments and support a wide range of interesting application tasks, such as aspect-based opinion summarization, personalized entity ranking and recommendation, and reviewer behavior analysis.

Original languageEnglish (US)
Title of host publicationProceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD'11
PublisherAssociation for Computing Machinery
Pages618-626
Number of pages9
ISBN (Print)9781450308137
DOIs
StatePublished - 2011
Event17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2011 - San Diego, United States
Duration: Aug 21 2011Aug 24 2011

Publication series

NameProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

Conference

Conference17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2011
Country/TerritoryUnited States
CitySan Diego
Period8/21/118/24/11

Keywords

  • Aspect identification
  • Latent rating analysis
  • Review mining

ASJC Scopus subject areas

  • Software
  • Information Systems

Fingerprint

Dive into the research topics of 'Latent aspect rating analysis without aspect keyword supervision'. Together they form a unique fingerprint.

Cite this