TY - GEN
T1 - Large-scale Point-of-interest Category Prediction Using Natural Language Processing Models
AU - Zhang, Daniel Yue
AU - Wang, Dong
AU - Zheng, Hao
AU - Mu, Xin
AU - Li, Qi
AU - Zhang, Yang
N1 - Funding Information:
ACKNOWLEDGMENT This research is supported in part by the National Science Foundation under Grant No. CBET-1637251, CNS-1566465 and IIS-1447795 and Army Research Office under Grant W911NF-17-1-0409. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research Office or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation here on.
Funding Information:
This research is supported in part by the National Science Foundation under Grant No. CBET-1637251, CNS-1566465 and IIS-1447795 and Army Research Office under Grant W911NF-17-1-0409. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research Office or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation here on.
Publisher Copyright:
© 2017 IEEE.
PY - 2017/7/1
Y1 - 2017/7/1
N2 - Point-of-Interest (POI) recommendation is an important application in Location-based Social Networks (LBSN). The category prediction problem is to predict the next POI category that users may visit. The predicted category information is critical in large-scale POI recommendation because it can significantly reduce the prediction space and improve the recommendation accuracy. While efforts have been made to address the POI category prediction problem, several important challenges still exist. First, existing solutions did not fully explore the temporal dependency (e.g., 'long range dependency') of users' check-in traces. Second, the hidden contextual information associated with each check-in point has been underutilized. In this work, we propose a Context-Aware POI Category Prediction (CAP-CP) scheme using Natural Language Processing (NLP) models. In particular, to address temporal dependency challenge, we develop a novel Temporal Adaptive Ngram (TA-Ngram) model to capture the dynamic dependency between check-in points. To address the challenge of hidden context incorporation, CAP-CP leverages the Probabilistic Latent Semantic Analysis (PLSA) model to infer the semantic implications of the context variables in the prediction model. Empirical results on a real world dataset show that our scheme can effectively improve the performance of the state-of-the-art POI recommendation solutions.
AB - Point-of-Interest (POI) recommendation is an important application in Location-based Social Networks (LBSN). The category prediction problem is to predict the next POI category that users may visit. The predicted category information is critical in large-scale POI recommendation because it can significantly reduce the prediction space and improve the recommendation accuracy. While efforts have been made to address the POI category prediction problem, several important challenges still exist. First, existing solutions did not fully explore the temporal dependency (e.g., 'long range dependency') of users' check-in traces. Second, the hidden contextual information associated with each check-in point has been underutilized. In this work, we propose a Context-Aware POI Category Prediction (CAP-CP) scheme using Natural Language Processing (NLP) models. In particular, to address temporal dependency challenge, we develop a novel Temporal Adaptive Ngram (TA-Ngram) model to capture the dynamic dependency between check-in points. To address the challenge of hidden context incorporation, CAP-CP leverages the Probabilistic Latent Semantic Analysis (PLSA) model to infer the semantic implications of the context variables in the prediction model. Empirical results on a real world dataset show that our scheme can effectively improve the performance of the state-of-the-art POI recommendation solutions.
KW - Context-Aware Prediction
KW - Location-based Social Networks
KW - Natural Language Processing
KW - POI Recommendation
UR - http://www.scopus.com/inward/record.url?scp=85042308753&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85042308753&partnerID=8YFLogxK
U2 - 10.1109/BigData.2017.8258026
DO - 10.1109/BigData.2017.8258026
M3 - Conference contribution
AN - SCOPUS:85042308753
T3 - Proceedings - 2017 IEEE International Conference on Big Data, Big Data 2017
SP - 1027
EP - 1032
BT - Proceedings - 2017 IEEE International Conference on Big Data, Big Data 2017
A2 - Nie, Jian-Yun
A2 - Obradovic, Zoran
A2 - Suzumura, Toyotaro
A2 - Ghosh, Rumi
A2 - Nambiar, Raghunath
A2 - Wang, Chonggang
A2 - Zang, Hui
A2 - Baeza-Yates, Ricardo
A2 - Baeza-Yates, Ricardo
A2 - Hu, Xiaohua
A2 - Kepner, Jeremy
A2 - Cuzzocrea, Alfredo
A2 - Tang, Jian
A2 - Toyoda, Masashi
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 5th IEEE International Conference on Big Data, Big Data 2017
Y2 - 11 December 2017 through 14 December 2017
ER -