Large-Scale Particle Image Velocimetry Reveals Pulsing of Incoming Flow at a Stream Confluence

Sadia Sabrina, Quinn Lewis, Bruce Rhoads

Research output: Contribution to journalArticlepeer-review

Abstract

Despite widespread recognition that confluences are characterized by complex hydrodynamic conditions, few studies have mapped in detail spatial patterns of flow at confluences and variation in these patterns over time. Recent developments in large-scale particle image velocimetry (LSPIV) have created novel opportunities to explore the spatial and temporal dynamics of flow patterns at confluences. This study uses LSPIV to map two-dimensional flow structure at the water surface at a confluence and to examine variation in this structure over time. Results show that flow within the confluence is characterized by a large region of flow stagnation at the junction apex, a region of low velocities at the downstream junction corner, and a region of merging of the two flows along a mixing interface within the center of the confluence. Interaction between the incoming flows varies over time in the form of episodic pulsing in which one of the two tributary flows first decelerates and then subsequently accelerates into the confluence. The cause of this pulsing remains uncertain, but it may reflect unsteadiness in the water-surface pressure-gradient field as the two flows compete for space within the confluence. No large-scale vortices are evident within the mixing interface for the particular flow conditions documented in this study, but such vortices do occur along the margins of the stagnation zone where shearing action between fast-moving and slow-moving fluid is strong. The results of the study provide insight into the time-dependent dynamics of the spatial structure of flow at stream confluences.

Original languageEnglish (US)
Article numbere2021WR029662
JournalWater Resources Research
Volume57
Issue number9
DOIs
StatePublished - Sep 2021

ASJC Scopus subject areas

  • Water Science and Technology

Fingerprint

Dive into the research topics of 'Large-Scale Particle Image Velocimetry Reveals Pulsing of Incoming Flow at a Stream Confluence'. Together they form a unique fingerprint.

Cite this