Large Language Models and Future of Information Retrieval: Opportunities and Challenges

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Recent years have seen great success of large language models (LLMs) in performing many natural language processing tasks with impressive performance, including tasks that directly serve users such as question answering and text summarization. They open up unprecedented opportunities for transforming information retrieval (IR) research and applications. However, concerns such as halluciation undermine their trustworthiness, limiting their actual utility when deployed in real-world applications, especially high-stake applications where trust is vital. How can we both exploit the strengths of LLMs and mitigate any risk caused by their weaknesses when applying LLMs to IR? What are the best opportunities for us to apply LLMs to IR? What are the major challenges that we will need to address in the future to fully exploit such opportunities? Given the anticipated growth of LLMs, what will future information retrieval systems look like? Will LLMs eventually replace an IR system? In this perspective paper, we examine these questions and provide provisional answers to them. We argue that LLMs will not be able to replace search engines, and future LLMs would need to learn how to use a search engine so that they can interact with a search engine on behalf of users. We conclude with a set of promising future research directions in applying LLMs to IR.

Original languageEnglish (US)
Title of host publicationSIGIR 2024 - Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval
PublisherAssociation for Computing Machinery
Pages481-490
Number of pages10
ISBN (Electronic)9798400704314
DOIs
StatePublished - Jul 10 2024
Event47th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2024 - Washington, United States
Duration: Jul 14 2024Jul 18 2024

Publication series

NameSIGIR 2024 - Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval

Conference

Conference47th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2024
Country/TerritoryUnited States
CityWashington
Period7/14/247/18/24

Keywords

  • conversational information access
  • information retrieval models
  • intelligent agent
  • large language models
  • search engines

ASJC Scopus subject areas

  • Information Systems
  • Software

Fingerprint

Dive into the research topics of 'Large Language Models and Future of Information Retrieval: Opportunities and Challenges'. Together they form a unique fingerprint.

Cite this