Abstract
Spin torque is a promising tool for driving magnetization dynamics for computing technologies. These torques can be easily produced by spin-orbit effects, but for most conventional spin source materials, a high degree of crystal symmetry limits the geometry of the spin torques produced. Magnetic ordering is one way to reduce the symmetry of a material and allow exotic torques, and antiferromagnets are particularly promising because they are robust against external fields. We present spin torque ferromagnetic resonance (ST-FMR) measurements and second harmonic Hall measurements characterizing the spin torques in antiferromagnetic iron rhodium alloy. We report extremely large, strongly temperature-dependent exotic spin torques with a geometry apparently defined by the magnetic ordering direction. We find the spin torque efficiency of iron rhodium to be (207 ± 94)% at 170 K and (88 ± 32)% at room temperature. We support our conclusions with theoretical calculations showing how the antiferromagnetic ordering in iron rhodium gives rise to such exotic torques.
Original language | English (US) |
---|---|
Article number | 024075 |
Journal | Physical Review Applied |
Volume | 18 |
Issue number | 2 |
DOIs | |
State | Published - Aug 2022 |
ASJC Scopus subject areas
- General Physics and Astronomy