Large Eddy Simulations of film-cooling flows with a micro-ramp vortex generator

Aaron F. Shinn, S. Pratap Vanka

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Large Eddy Simulations were performed to study the effect of a micro-ramp on an inclined turbulent jet interacting with a cross-flow in a film-cooling configuration. The micro-ramp vortex generator is placed downstream of the film-cooling jet. Changes in vortex structure and film-cooling effectiveness are evaluated and the genesis of the counter-rotating vortex pair in the jet is discussed. Results are reported with the jet modeled using a plenum/pipe configuration. This configuration was designed based on previous wind tunnel experiments at NASA Glenn Research Center, and the present results are meant to supplement those experiments. It is found that the micro-ramp improves film-cooling effectiveness by generating near-wall counter-rotating vortices which help entrain coolant from the jet and transport it to the surface. The pair of vortices generated by the micro-ramp are of opposite sense to the vortex pair embedded in the jet.

Original languageEnglish (US)
Title of host publicationFluids and Thermal Systems; Advances for Process Industries
PublisherAmerican Society of Mechanical Engineers (ASME)
Pages439-451
Number of pages13
EditionPARTS A AND B
ISBN (Print)9780791854921
DOIs
StatePublished - Jan 1 2011
EventASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011 - Denver, CO, United States
Duration: Nov 11 2011Nov 17 2011

Publication series

NameASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011
NumberPARTS A AND B
Volume6

Other

OtherASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011
CountryUnited States
CityDenver, CO
Period11/11/1111/17/11

ASJC Scopus subject areas

  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Large Eddy Simulations of film-cooling flows with a micro-ramp vortex generator'. Together they form a unique fingerprint.

Cite this