TY - JOUR
T1 - Lanthionine synthetase C-like protein 2 (LanCL2) is a novel regulator of Akt
AU - Zeng, Min
AU - Van Der Donk, Wilfred A.
AU - Chen, Jie
N1 - Publisher Copyright:
© 2014 Zeng et al.
PY - 2014/12/1
Y1 - 2014/12/1
N2 - The serine/threonine protein kinase Akt controls a wide range of biochemical and cellular processes under the modulation of a variety of regulators. In this study, we identify the lanthionine synthetase C-like 2 (LanCL2) protein as a positive regulator of Akt activation in human liver cells. LanCL2 knockdown dampens serum- and insulin-stimulated Akt phosphorylation, whereas LanCL2 overexpression enhances these processes. Neither insulin receptor phosphorylation nor the interaction between insulin receptor substrate and phosphatidylinositide 3-kinase (PI3K) is affected by LanCL2 knockdown. LanCL2 also does not function through PP2A, a phosphatase of Akt. Instead, LanCL2 directly interacts with Akt, with a preference for inactive Akt. Moreover, we show that LanCL2 also binds to the Akt kinase mTORC2, but not phosphoinositide-dependent kinase 1. Whereas LanCL2 is not required for the AktmTORC2 interaction, recombinant LanCL2 enhances Akt phosphorylation by target of rapamycin complex 2 (mTORC2) in vitro. Finally, consistent with a function of Akt in regulating cell survival, LanCL2 knockdown increases the rate of apoptosis, which is reversed by the expression of a constitutively active Akt. Taken together, our findings reveal LanCL2 as a novel regulator of Akt and suggest that LanCL2 facilitates optimal phosphorylation of Akt by mTORC2 via direct physical interactions with both the kinase and the substrate.
AB - The serine/threonine protein kinase Akt controls a wide range of biochemical and cellular processes under the modulation of a variety of regulators. In this study, we identify the lanthionine synthetase C-like 2 (LanCL2) protein as a positive regulator of Akt activation in human liver cells. LanCL2 knockdown dampens serum- and insulin-stimulated Akt phosphorylation, whereas LanCL2 overexpression enhances these processes. Neither insulin receptor phosphorylation nor the interaction between insulin receptor substrate and phosphatidylinositide 3-kinase (PI3K) is affected by LanCL2 knockdown. LanCL2 also does not function through PP2A, a phosphatase of Akt. Instead, LanCL2 directly interacts with Akt, with a preference for inactive Akt. Moreover, we show that LanCL2 also binds to the Akt kinase mTORC2, but not phosphoinositide-dependent kinase 1. Whereas LanCL2 is not required for the AktmTORC2 interaction, recombinant LanCL2 enhances Akt phosphorylation by target of rapamycin complex 2 (mTORC2) in vitro. Finally, consistent with a function of Akt in regulating cell survival, LanCL2 knockdown increases the rate of apoptosis, which is reversed by the expression of a constitutively active Akt. Taken together, our findings reveal LanCL2 as a novel regulator of Akt and suggest that LanCL2 facilitates optimal phosphorylation of Akt by mTORC2 via direct physical interactions with both the kinase and the substrate.
UR - http://www.scopus.com/inward/record.url?scp=84913529605&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84913529605&partnerID=8YFLogxK
U2 - 10.1091/mbc.E14-01-0004
DO - 10.1091/mbc.E14-01-0004
M3 - Article
C2 - 25273559
AN - SCOPUS:84913529605
SN - 1059-1524
VL - 25
SP - 3954
EP - 3961
JO - Molecular biology of the cell
JF - Molecular biology of the cell
IS - 24
ER -