Cell death plays a critical role in health and homeostasis as well as in the pathogenesis and treatment of a broad spectrum of diseases and can be broadly divided into two main categories: apoptosis, or programmed cell death, and necrosis, or acute cell death. While these processes have been characterized extensively in vitro, label-free detection of apoptosis and necrosis at the cellular level in vivo has yet to be shown. In this study, for the first time, fluorescence lifetime imaging microscopy (FLIM) of intracellular reduced nicotinamide adenine dinucleotide (NADH) was utilized to assess the metabolic response of in vivo mouse epidermal keratinocytes following induction of apoptosis and necrosis. Results show significantly elevated levels of both the mean lifetime of NADH and the intracellular ratio of protein bound-to-free NADH in the apoptotic compared to the necrotic tissue. In addition, the longitudinal profiles of these two cell death processes show remarkable differences. By identifying and extracting these temporal metabolic signatures, apoptosis in single cells can be studied in native tissue environments within the living organism. (Figure presented.).

Original languageEnglish (US)
Pages (from-to)143-150
Number of pages8
JournalJournal of Biophotonics
Issue number1
StatePublished - Jan 1 2017


  • apoptosis
  • cell death
  • fluorescence lifetime imaging microscopy
  • in vivo imaging
  • label-free imaging

ASJC Scopus subject areas

  • General Chemistry
  • General Materials Science
  • General Biochemistry, Genetics and Molecular Biology
  • General Engineering
  • General Physics and Astronomy


Dive into the research topics of 'Label-free in vivo cellular-level detection and imaging of apoptosis'. Together they form a unique fingerprint.

Cite this