Label-free high-resolution imaging of live cells with deconvolved spatial light interference microscopy

Justin P. Haldar, Zhuo Wang, Gabriel Popescu, Zhi Pei Liang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Spatial light interference microscopy (SLIM) is a powerful new quantitative phase optical imaging technique that can be used for studying live cells without the need for exogenous contrast agents. This paper proposes a novel deconvolution-based approach to reconstructing SLIM data, which dramatically improves the visual quality of the images. The proposed deconvolution formulation is tailored to the physics of SLIM imaging of biological samples, and a new fast algorithm is designed for computationally-efficient image reconstruction in this setting. Simulation and experimental results demonstrate that deconvolution can reduce the width of the point-spread function by at least 20%, and can significantly improve the contrast of high-resolution features. Temporally-resolved SLIM imaging with the high spatial resolution enabled by deconvolution provides new opportunities for studying the dynamics of cellular and sub-cellular processes.

Original languageEnglish (US)
Title of host publication2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC'10
Pages3382-3385
Number of pages4
DOIs
StatePublished - 2010
Event2010 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC'10 - Buenos Aires, Argentina
Duration: Aug 31 2010Sep 4 2010

Publication series

Name2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC'10

Other

Other2010 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC'10
Country/TerritoryArgentina
CityBuenos Aires
Period8/31/109/4/10

ASJC Scopus subject areas

  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Signal Processing
  • Health Informatics

Fingerprint

Dive into the research topics of 'Label-free high-resolution imaging of live cells with deconvolved spatial light interference microscopy'. Together they form a unique fingerprint.

Cite this